Wing vein formation in Drosophila melanogaster: Hairless is involved in the cross-talk between Notch and EGF signaling pathways

نویسندگان

  • Bernd Johannes
  • Anette Preiss
چکیده

Wing vein development in Drosophila is controlled by different morphogenetic pathways, including Notch. Hairless (H) antagonizes Notch target gene activation by binding to the Notch signal transducer Suppressor of Hairless [Su(H)]. Accordingly, overexpression of H phenocopies reduction of Notch activity. Deletion of the Su(H)-binding domain in H-C2 results in loss of H activity. However, overexpression of H-C2 induces formation of ectopic veins. In a screen for genetic modifiers of this phenotype, we have identified several genes involved in Notch and epidermal growth factor (EGF) signaling. Most notably veinlet, an activator of EGF signaling, acts downstream of H-C2. H-C2 positively regulates veinlet maybe through inhibition of inter-vein determinants in agreement with a model, whereby Notch and EGF signaling pathways cross-regulate vein pre-patterning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic characterization of the Drosophila melanogaster Suppressor of deltex gene: A regulator of notch signaling.

The Notch receptor signaling pathway regulates cell differentiation during the development of multicellular organisms. A number of genes are known to be components of the pathway or regulators of the Notch signal. One candidate for a modifier of Notch function is the Drosophila Suppressor of deltex gene [Su(dx)]. We have isolated four new alleles of Su(dx) and mapped the gene between 22B4 and 2...

متن کامل

The Drosophila IgC2 domain protein Friend-of-Echinoid, a paralogue of Echinoid, limits the number of sensory organ precursors in the wing disc and interacts with the Notch signaling pathway.

The Notch signaling pathway is critical in cell fate specification throughout development. In the developing wing disc, single sensory organ precursors (SOPs) are selected from proneural clusters via a process of lateral inhibition mediated by the Notch signaling pathway. The epidermal growth factor receptor (EGFR) pathway has also been implicated in SOP formation. Here, we describe the Drosoph...

متن کامل

Context-Dependent Enhancer Selection Confers Alternate Modes of Notch Regulation on argos

Wiring between signaling pathways differs according to context, as exemplified by interactions between Notch and epidermal growth factor receptor (EGFR) pathways, which are cooperative in some contexts but antagonistic in others. To investigate mechanisms that underlie different modes of cross talk, we have focused on argos, an EGFR pathway regulator in Drosophila melanogaster which is upregula...

متن کامل

Notch Inhibits Yorkie Activity in Drosophila Wing Discs

During development, tissues and organs must coordinate growth and patterning so they reach the right size and shape. During larval stages, a dramatic increase in size and cell number of Drosophila wing imaginal discs is controlled by the action of several signaling pathways. Complex cross-talk between these pathways also pattern these discs to specify different regions with different fates and ...

متن کامل

Structural and functional analysis of the repressor complex in the Notch signaling pathway of Drosophila melanogaster

In metazoans, the highly conserved Notch pathway drives cellular specification. On receptor activation, the intracellular domain of Notch assembles a transcriptional activator complex that includes the DNA-binding protein CSL, a composite of human C-promoter binding factor 1, Suppressor of Hairless of Drosophila melanogaster [Su(H)], and lin-12 and Glp-1 phenotype of Caenorhabditis elegans. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mechanisms of Development

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2002